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The author proposes an interface matching method for solving surface plasmon modes with damping in
plasmonic crystals. The damping constant is considered a crucial parameter instead of a small perturbation to
the undamped system. The damping effect is manifest on the complex nature of the eigenfrequency as well as
on the eigenfield. For periodic layered structures, the decay factors of the two fundamental modes asymptoti-
cally approach � /2 in the large-wave-number limit. For two-dimensional plasmonic crystals, the decay factors
of surface plasmon modes are gathered around and bounded by � /2.
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I. INTRODUCTION

Surface plasmons are electromagnetic waves that propa-
gate along the surface of a conductor �1�. These waves come
from collective excitations of the electric charges, coupled
with the external electromagnetic fields. In addition to met-
als, surface plasmons occur as well in semiconductors �2,3�,
semimetals �4�, and metamaterials �5�, Surface plasmons
may therefore spread a wide range of frequency from the
optical �hundreds of terahertz� to infrared �terahertz�, and
even microwave �gigahertz� regimes. The most distinguish-
ing feature of surface plasmons is the exponential decay of
field amplitude away from the surface. This property is also
referred to as evanescent, near-field, bound, and nonradia-
tive. Making use of the property that the fields are largely
confined within a very narrow region with strong enhance-
ment, surface plasmons are being explored in optical data
storage �6,7�, biosensing �8,9�, light generation �10,11�, pho-
tonic circuits �12,13�, solar cells �14,15�, and so forth. With
the progress of nanofabrication technologies and micro-
scopic measurement techniques �16,17�, even more applica-
tions are proposed.

The problem of solving surface plasmon modes involves
dealing with a nonlinear eigenvalue problem, as the fre-
quency is considered an unknown �18�. The interface match-
ing method was proposed to solve the problem in an accurate
and efficient manner, without resorting to nonlinear tech-
niques. On the one hand, the original eigensystem is refor-
matted as a linear equation that can be solved by standard
algorithms. On the other hand, the highly localized feature
associated with surface plasmons is resolved through the use
of the interface condition. This approach has been success-
fully applied to solve surface plasmon modes in plasmonic
crystals �19�, polaritonic crystals �20�, negative index crys-
tals �21�, plasmonic hole waveguides �22�, and plasmonic
split-ring structures �23�.

In this Brief Report, the author extends the interface
matching method to be applicable to surface plasmon modes
with damping. Instead of considering the damping effect as a
perturbation to the undamped system, where the damping
constant � is a small number �19�, the present approach re-

gards � as a crucial parameter that can be specified according
to real situations. By use of the Drude model, the underlying
problem is reformulated as a cubic eigensystem, which in
turn is recast into a linear equation and solved by standard
algorithms. The damping effect is manifest on the complex
nature of the eigenfrequency as well as the eigenfield. On the
one hand, the complex eigenfrequency exhibits a decay fac-
tor of the field amplitude in time, when the wave vector is
considered real. On the other hand, the complex eigenfield
indicates a phase lag of the field oscillation, as compared to
the case without damping. These features are reported in
periodic layered structures, where the decay factors of the
two fundamental branches �usually termed the acoustical and
optical modes� asymptotically approach � /2 as the wave
number goes to infinity. For two-dimensional plasmonic
crystals, the decay factors associated with surface plasma
modes are intensively gathered around and bounded by � /2.

II. INTERFACE MATCHING METHOD

The basic idea of the interface matching method is to deal
with the wave equation strictly in the interior of two different
media, so that the equation in either region can be rearranged
as a standard equation by employing a suitable dielectric
model. The two equations are then connected by matching
the boundary condition at the interface. A general formula-
tion is utilized to combine together the equations in the inte-
rior as well as at the interface, and to give rise to a general-
ized eigensystem that can be efficiently solved by standard
algorithms.

A. Basic equations

Based on Maxwell’s equations, the time-harmonic elec-
tromagnetic fields �with time dependence e−i�t� in a linear,
isotropic, and nonmagnetic medium satisfy the following
wave equations �24�:
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Consider two-dimensional structures with periodicity in the
xy plane and the geometry constant along the z axis. The*chern@iam.ntu.edu.tw
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problem can be classified into transverse magnetic �TM� and
transverse electric �TE� polarizations with respect to the z
axis; that is, TM refers to the case with Hz=0 and TE refers
to Ez=0. Either case can be described in terms of the z com-
ponent as

− �2Ez = ���

c
�2

Ez, �3�

− � · �1

�
� Hz� = ��

c
�2

Hz, �4�

for TM and TE polarizations, respectively. Equations �3� and
�4� are considered eigenvalue problems regarding the fre-
quency as an unknown. For a frequency-dependent dielectric
function �=����, the differential operator in Eq. �4� depends
on the problem to be solved and the corresponding eigensys-
tem becomes nonlinear in frequency �18�. In addition, either
Eq. �3� or �4� contains two unknowns, � and Ez �or Hz� and
there needs to be an additional condition for the problem to
be complete. For periodic structures, the periodicity along
the lattice serves as a physical constraint that the fields are
subject to Bloch’s condition: ��r+ai�=eik·ai��r�, where � is
either Ez or Hz, k=kxx̂+kyŷ is the Bloch wave vector, and ai
�i=1,2� is the lattice translation vector in the xy plane. The
problem for the periodic structure with infinite extent is
solved within one unit cell.

Let the structure consist of two different media: plas-
monic material and a surrounding dielectric. Strictly in the
interior of the dielectric or metal where the interface is ex-
cluded, Eq. �3� or �4� is simplified to

− �2� = ���

c
�2

� . �5�

To account for the damping effect, the Drude model �=1
−�p

2 / ��2+ i��� is used for the dielectric function of the plas-
monic material, where �p is the bulk plasma frequency and �
is the damping constant. Let �d be the dielectric constant of
the surrounding material; Eq. �5� can be rearranged as

��2�d + �2�� = 0, �6�

��3 + �2�i�� + ���2 − �p
2� + i��2�� = 0, �7�

for � in the dielectric and plasmonic materials, respectively,
where ��� /c, �p��p /c, and ��� /c. The above two
equations in the interiors are connected by matching the
boundary condition at the interface between the two media.
According to Faraday’s law, ��E= i�H, the tangential
magnetic field for TM polarization is given as n̂�H
= �i /����Ez /�n�ẑ, where n̂ is the unit vector normal to the
interface. Likewise, according to Ampere-Maxwell’s law �
�H=−i��E, the tangential electric field for TE polarization
is given as n̂�E=−�i /�����Hz /�n�ẑ. Continuity of the tan-
gential field components at the interface thus requires
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where �¯�S denotes the jump across the interface S. Using
the Drude model for the plasmonic material, one has

� ��

�n
�

+
= � ��

�n
�

−
, �9�

� 1

�d

��

�n
�

+
= � �2 + i��

�2 + i�� − �p
2

��

�n
�

−

, �10�

for the TM and TE polarizations, respectively, where � re-
fers to the dielectric side and 	 to the metal side. It is noted
that Eq. �9� is always satisfied once a smooth solution of Eq.
�5� is obtained. The matching of the interface is therefore not
necessary for TM polarization. For TE polarization, Eq. �10�
depends on � and needs an explicit treatment in the solution
procedure, which will be addressed further in the next sec-
tion. It is also noted that surface plasmons exist only for TE
polarization, where the interface condition plays an impor-
tant role in the characteristics of surface plasmons �22�.

B. Eigensystems

Let �i,j �i , j=0, . . . ,N� be the discrete value of � at the
point �ih , jh� in the unit cell, where h�a /N is the uniform
spacing of discretization and a is the lattice constant. Strictly
in the interior of the dielectric or plasmonic material, the
central difference scheme is used to discretize Eqs. �6� and
�7�, giving rise to

��2�d − L��i,j = 0, �11�

��3 + �2�i�� − ��L + �p
2� − i�L��i,j = 0, �12�

where L�i,j = �1 /h2��
x
++
x

−+
y
++
y

−��i,j, with 
x
��i,j =�i,j

−�i�1,j and 
y
��i,j =�i,j −�i,j�1. At the interface between the

dielectric and plasmonic materials, the one-sided difference
scheme is utilized to discretize Eq. �10� on either side of the
interface, and yields

��2B + ��i�B� − A��i,j = 0, �13�

where
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�
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v
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 �14�

and

A�i,j = ��p
2
h

��i,j for n̂ = ��1,0� ,

�p
2
v

��i,j for n̂ = �0, � 1� .
� �15�

Note that B�i,j and A�i,j depend on the unit normal vector n̂
of the interface, pointing from inside the metal to outside.
Near the surface plasmon resonance, the solutions will be
highly localized at the interface and this feature is resolved
by matching the normal derivatives from either side of the
interface �cf. Eq. �10��.

The discretized equation for �i strictly in the interior
�Eqs. �11� and �12�� as well as at the interface �Eq. �13�� are
arranged together to yield a cubic system equation,
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��3B − �2D − �A − E�x = 0 , �16�

where B, D, A, and E are square matrices and x is the ei-
genvector consisting of all �i,j. The eigensystem �16� is
made complete by incorporating the Bloch condition at the
unit cell boundary, in which the field values at the left and
right sides are related by �N,j =�0,je

ik·a1, and �i,N=�i,0eik·a2.
Introducing two auxiliary vectors y=�x and z=�2x, Eq.
�16� can be recast into

0 I 0

0 0 I

E A D
�x

y

z
� = �I 0 0

0 I 0

0 0 B
�x

y

z
� , �17�

which is a generalized linear eigensystem: A�x�=�B�x�.
Note that the entries of A� and B� are all independent of �
and the overall system can be solved by standard algorithms
�25,26�.

III. RESULTS AND DISCUSSION

In the presence of damping, the dispersion characteristics
of surface plasmons alter in two aspects. First, the dielectric
function � is complex and solutions of the corresponding
eigensystem are no longer real. Figure 1 shows the disper-
sion relation for a periodic metal layered structure with the
fraction f =0.8 based on the Drude model with �pa /2�c=1,
� /�p=0.2, and �d=1. The real and imaginary parts of the
eigenfrequencies are represented in Figs. 1�a� and 1�b�, re-
spectively. The effect of damping is manifest on the two
fundamental TE frequency branches. The real eigenfre-

quency Re��� is slightly attenuated, while the imaginary
eigenfrequency Im��� grows in proportion to �. In addition,
the optical �higher� branch has a more negative Im��� than
the acoustical �lower� branch at k� =0. As k� increases, Im���
asymptotically approaches −� /2 for both branches. This fea-
ture can be characterized by the dispersion for a planar metal
surface, given by �27,28�

k� =
�

c
� �d�m���

�d + �m���
. �18�

As �d+�m��� approaches zero, k� goes to infinity and the
asymptotic frequency is identified as the surface plasma fre-
quency �sp. For systems without damping, that is, �=1
−�p

2 /�2, one has �sp=�p /��d+1. This asymptotic behavior
holds for other structures such as metal films �29�, periodic
metal layers �19�, plasmonic crystals �19�, and plasmonic
hole waveguides �22�. For systems with damping, that is, �
=1−�p

2 / ��2+ i���, the dispersion relation �18� becomes

�d�4 + i��d�3 − ��d�p
2 + ��d + 1�k�

2c2��2

− i���d + 1�k�
2c2� + k�

2c2�p
2 = 0. �19�

In the limit as k�→, Eq. �19� is simplified to �2+ i��
−�p

2 / ��d+1�=0 and the asymptotic solution is given by

�sp =� �p
2

�d + 1
−

�2

4
−

i�

2
, �20�

which is regarded as the surface plasma frequency in the
presence of damping. Compared to the case for �=0, the real
part of �sp is slightly reduced and the imaginary part is equal
to −� /2. This feature is consistent with the result shown in
Fig. 1�b�. In another aspect, the presence of damping gives
rise to complex eigenfields, as shown in Figs. 1�c� and 1�d�
for the acoustical and optical modes, respectively, at
k�a /2�=3. The imaginary part of the magnetic field is in
phase with the real part, and is proportional to the damping
constant. In view of the time dependence e−i�t used in the
Drude model, the presence of damping results in a phase lag
of the eigenfield. This feature consists with the mechanism of
dissipation during the oscillation of fields �30�.

Figure 2 shows the dispersion relation for a periodic array
of square metal columns of width 0.6a with �pa /2�c=1 and
� /�p=0.2. The real parts of the frequency branches �Fig.
2�a�� retain the typical features of plasmonic crystals �19�. A
large number of TE branches gather around the surface
plasma frequency �sp, given by Eq. �20�. As the frequency
gets closer to �sp, more branches are observed. Due to the
strong coupling of photons with electrons, these branches
become dispersionless, or insensitive to the change of wave
vector. They appear as flattened bands located within a rather
small bandwidth. The effect of damping is manifest on the
imaginary parts of TE branches �Fig. 2�b��, which basically
grow in proportion to �. As the real frequency branches
come close to �sp, the imaginary parts of eigenfrequencies
tend to approach and be bounded by −� /2. This feature is
consistent with that for the layered structure shown in Fig. 1.
A typical surface plasmon mode pattern at the point � is
shown in Figs. 2�c� and 2�d�, respectively. The fields are
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FIG. 1. �Color online� Dispersion relation and mode patterns for
a periodic metal layered structure with f =0.8 based on the Drude
model with �pa /2�c=1 and � /�p=0.2 at k�=0. �a� Real and �b�
imaginary frequency branches; �c� acoustical and �d� optical mode
at k�a /2�=3. The shaded area corresponds to the metal region. k�

and k� are the wave number components perpendicular and parallel
to the metal surface, respectively.
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highly localized near the interface, as in the case without
damping �19�. In addition, the imaginary part of the magnetic
field is in phase with the real part, and grows in proportion to
the damping constant, as for periodic layered structures. In
the present study, the validity of damping effect is limited to
the frequency range where the Drude model is appropriate.
Outside this range, the interface matching method has to be
designed according to specific considerations.

IV. CONCLUDING REMARKS

In conclusion, an interface matching method was pro-
posed for solving surface plasmon modes with damping in
plasmonic crystals. By matching the boundary condition at
the interface, the original nonlinear eigenvalue problem is
reformulated as a cubic eigensystem, which in turn is recast
into a linear equation that can be solved by standard algo-
rithms. The damping constant is regarded as a crucial param-
eter that plays an important role in the properties of surface
plasmons, instead of a small perturbation to the case without
damping. The effect of damping is manifest on the complex
nature of eigenfrequencies and eigenfields. The real fre-
quency branches retain the basic dispersion features of the
undamped system, with the surface plasma frequency �sp
slightly attenuated. The imaginary frequency that represents
the decay factor in time is proportional to the damping con-
stant � and bounded by −� /2. Meanwhile, the complex
eigenfields indicate a phase lag of the field oscillation, com-
pared to the case without damping. These features apply to
periodic metal layered structures, where the basic dispersion
is described by the acoustical and optical modes, as well as
periodic arrays of metal columns, where the dispersion is
characterized by intensive surface plasmon modes gathered
around �sp.
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FIG. 2. �Color online� Dispersion relation and mode patterns for
a periodic array of square metal columns with width 0.6a based on
the Drude model with �pa /2�c=1 and � /�p=0.2. �a� Real and �b�
imaginary frequency branches; �c� real and �d� imaginary parts of
the magnetic field for a typical surface plasmon mode at the point
�.
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